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Sampling



Sample a random number from uniform [0,1]?

Pseudo-random number generator (PRNG), which is an algorithm
that produces a sequence of numbers that appears random.

Linear Congruential Generator (LCG)

Parameters:
X, (seed), a=22,695,477, c=1, m =2
Step 1 — Generate next integer:
Xni1 = (aX,, + ¢) mod m

Step 2 — Optional normalization:

Xn
Un—H — = € [Oa 1)
m

Step 3 — Repeat:

Use X, 11 as the new seed and iterate as many times as needed.



Sample a random number from Normal distribution N(0,1)?
start from uniform distribution, then transform it to normal distribution

Box-Muller Transform e e et .
Uy, Us ~ Uniform(0, 1)

Zy =/ —2InU; cos(2mls), :
Z]_ — \/—211’1 Ul Sin(27TU2) % I T T

Zy, Z1 ~N(0,1), independent



Sample a random state from Ising model?

For spins s; € {41, —1} on graph G with couplings J;; and external fields h;,

P(s) = —exp< ZJ,JSZSJ +ﬂZh s)

where 8 = 1/(kgT). Energy E(s) = =D Jijsis; — D hisi.

Gibbs Sampling Steps
1. Pick a spin 7 to update (randomly or in sequence).

2. Compute the local field acting on that spin:

H;, = ZJUSJ + h;.
J
3. Compute the conditional probability that spin 7 is +1:
BH;
e 1
P(Si = +1 | S\Z’) = eﬂHi n e—ﬂHi = 1 T 6—25Hi 4
from this Bernoulli distribution:

4. Sample sz(-tH)

St _ +1 with probability p; = ﬁ,
! —1 with probability 1 — p;.

5. Repeat steps 1-4 for all spins (one “sweep”) to get the next full configuration st+1),

6. Iterate many sweeps until samples approximate the stationary distribution P (s)


http://www.youtube.com/watch?v=kjwKgpQ-l1s

Generative Modeling



How to generate data sampled from some distribution?

data
distribution
of data
sample new “data”
estimated ' ~ p(z|y)
distribution i

of data



Transform a simple distribution to
a complex one that approximates the data distribution

to approximate

9(z) ~ P

simple distribution 7T
data distribution Py



Deep Generative Model

* Modeling & Learning
« Formulation: frame the problem as probabilistic modeling
» Representation: deep neural networks to represent data distribution
 Objective: to measure how good the predicted distribution is
« Symmetry: decompose complex distributions into simple and tractable ones
* Inference:
» sampler: to produce new samples

* probability density estimator (optional)



Probabilistic Graphical Model & Autoregressive Model

Formulation: frame the problem as probabilistic modeling

p(r1, T2, ..., Tn) = p(z1)p(Z2 | Z1)...p(Tn | 71,2, ..., Tn—1)

p(4, B, C) = p(A)p(B | A)p(C | 4, B)
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Variational Autoencoder

Representation: deep neural networks to represent data distribution

L) =|—Eproq izl [10gp9($|z)] + Dk (%(zll‘)”p(z))

p(2)
encoder g,(z|x) A decoder py(z|z)
q4(2)




Generative Adversarial Networks

Objective: to measure how good the predicted distribution is

A
& e

pdata

I8(p,q) = 3 KLp|lm) + ;KUg|[m) = H(m)-3H(p) - 3H(q), ~ m=E"

= sup {E,[f]-E,[f] ]

v€T(p,q) b1 IflLip<t

1/k
Wl(p,Q)=( inf /d(w,y)’“d'v(w,y))




Diffusion Model and beyond

Symmetry: decompose complex distributions into simple and tractable ones

Forward SDE (data — noise)
dx = f(x,t)dt + g(¢t)dw —)@
N S o P TR g c funt, DEDPER R S N
dx = [f(x,t) — g°(t)Vx log p (x)] dt + g(t)dw —@

Reverse SDE (noise — data)




Applications



Language Generation
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http://www.youtube.com/watch?v=6w2UnLLNIco&t=90

Audio Generation
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Image Generation
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output segmentation map
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Molecule Generation



https://docs.google.com/file/d/1hyjZ2yrgFxeg7FAzSjV84mpHOCa3g7tw/preview

Robot Learning P(actions | past observations)
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https://docs.google.com/file/d/1zq2xZZH3w02hZ87a6YpLa9br1uxt5kmd/preview

Denoising process

Video Generation

&



http://www.youtube.com/watch?v=HK6y8DAPN_0&t=120

Multimodality

Example: Text to Image

User Input:

s MR AR, W7 AR A PR R -

A teddy bear, wearing a costume, is standing in front of | s
the Hall of Supreme Harmony and singing Beijing opera
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Future Studies in Generative Modeling

Courses:

Stanford CS236 Deep Generative Models by Prof. Stefano Ermon

MIT 6.5978 Deep Generative Models by Prof. Kaiming He

To play around with generative models:

https://qithub.com/li-hong-yue/GenerativeModelsZo00



https://deepgenerativemodels.github.io/
https://mit-6s978.github.io/schedule.html
https://github.com/li-hong-yue/GenerativeModelsZoo

Thank you!
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